TrainImageComparisonReference

Trains Media Server to identify changes to an image. This adds a new reference, with a training image, to an image comparison database.

This action is atomic, so that any interruption to the server does not leave the database in an inconsistent state. The database is not modified if the action returns an error, or if you stop it using the QueueInfo action. If the training images fail, Media Server does not add the reference to the database.

Type: asynchronous

Parameter Description Required
database The name of the database to add the new image comparison reference to. The database must already exist. Yes
identifier A unique identifier for the reference (maximum 254 bytes). If you do not set this parameter, Media Server generates an identifier automatically. No
imagedata The training image to add. Files must be uploaded as multipart/form-data. For more information about sending data to Media Server, refer to the Media Server Administration Guide. Set this or imagepath
imagelabels A label to identify the image that you are adding (maximum 254 bytes). If you do not set this parameter, Media Server generates a label automatically. No
imagepath The path to the training image to add. The path must be absolute, or relative to the Media Server executable file. Set this or imagedata
metadata A comma-separated list of metadata key-value pairs to add to the reference. Separate keys from values using a colon (:). To include a comma or colon in a key name or value, enclose the key name or value in quotation marks (") and escape any quotation marks that occur within the string with a backslash (\). No
numparallel The maximum number of threads that the action can use (default 1). No

Example

The following example trains Media Server by sending the path of a training image using the imagepath parameter:

curl http://localhost:14000 -F action=TrainImageComparisonReference
                            -F database=ReferenceImages
                            -F identifier=toolkit
                            -F imagepath=toolkit1.png
                            -F imagelabels=image1
                            -F "metadata=PartNumber:8572087,\"another:value\":\"1,000\""

Alternatively, you can train Media Server by sending the image data, for example:

curl http://localhost:14000 -F action=TrainImageComparisonReference
                            -F database=ReferenceImages
                            -F identifier=toolkit
                            -F imagedata=@toolkit1.png
                            -F imagelabels=image1
                            -F "metadata=PartNumber:8572087,\"another:value\":\"1,000\""

Response

This action is asynchronous, so Media Server always returns success accompanied by a token:

<autnresponse>
  <action>TRAINIMAGECOMPARISONREFERENCE</action>
  <response>SUCCESS</response>
  <responsedata>
    <token>MTAuMi4xMDQuNTQ6MTgwMDA6VFJBSU5GQUNFOjE0MjkyNzE0NjAwMDQ1Ni0xMzAyMzQ3MDI2</token>
  </responsedata>
</autnresponse>

You can use this token with the QueueInfo action to retrieve the status of the action:

<autnresponse>
  <action>QUEUEINFO</action>
  <response>SUCCESS</response>
  <responsedata>
    <actions>
      <action>
        <status>Finished</status>
        <queued_time>2015-Jun-04 09:53:21</queued_time>
        <time_in_queue>0</time_in_queue>
        <process_start_time>2015-Jun-04 09:53:21</process_start_time>
        <time_processing>0</time_processing>
        <process_end_time>2015-Jun-04 09:53:21</process_end_time>
        <build>
          <image>
            <index>1</index>
            <label>image1</label>
            <status>trained</status>
          </image>
        </build>
        <database>ReferenceImages</database>
        <identifier>toolkit</identifier>
        <numimages>1</numimages>
        <numtrained>1</numtrained>
        <token>MTAuMi4xMDQuNTQ6MTgwMDA6VFJBSU5GQUNFOjE0MjkyNzE0NjAwMDQ1Ni0xMzAyMzQ3MDI2</token>
      </action>
    </actions>
  </responsedata>
</autnresponse>

_HP_HTML5_bannerTitle.htm